Classification of ECG Using Chaotic Models

نویسنده

  • Khandakar Mohammad Ishtiak
چکیده

Chaotic analysis has been shown to be useful in a variety of medical applications, particularly in cardiology. Chaotic parameters have shown potential in the identification of diseases, especially in the analysis of biomedical signals like electrocardiogram (ECG). In this work, underlying chaos in ECG signals has been analyzed using various non-linear techniques. First, the ECG signal is processed through a series of steps to extract the QRS complex. From this extracted feature, bit-to-bit interval (BBI) and instantaneous heart rate (IHR) have been calculated. Then some nonlinear parameters like standard deviation, and coefficient of variation and nonlinear techniques like central tendency measure (CTM), and phase space portrait have been determined from both the BBI and IHR. Standard database of MIT-BIH is used as the reference data where each ECG record contains 650000 samples. CTM is calculated for both BBI and IHR for each ECG record of the database. A much higher value of CTM for IHR is observed for eleven patients with normal beats with a mean of 0.7737 and SD of 0.0946. On the contrary, the CTM for IHR of eleven patients with abnormal rhythm shows low value with a mean of 0.0833 and SD 0.0748. CTM for BBI of the same eleven normal rhythm records also shows high values with a mean of 0.6172 and SD 0.1472. CTM for BBI of eleven abnormal rhythm records show low values with a mean of 0.0478 and SD 0.0308. Phase space portrait also demonstrates visible attractor with little dispersion for a healthy person’s ECG and a widely dispersed plot in 2-D plane for the ailing person’s ECG. These results indicate that ECG can be classified based on this chaotic modeling which works on the nonlinear dynamics of the system. Index Terms — ECG, CTM, Poincaré plot, ANOVA

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

طراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی

In this paper, Automatic electrocardiogram (ECG) arrhythmias classification is essential to timely diagnosis of dangerous electromechanical behaviors and conditions of the heart. In this paper, a new method for ECG arrhythmias classification using wavelet transform (WT) and neural networks (NN) is proposed. Here, we have used a discrete wavelet transform (DWT) for processing ECG recordings, and...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Analysis of Chaotic Signals: Non-linear Methods versus Neural Networks

Applications of Non-linear Methods and Neural Networks in the analysis of chaotic signals are compared in the paper. Results of time series analysis by non-linear methods are illustrated by computations of Lyapunov exponents and correlation dimension. Abilities of Neural networks are demonstrated in reconstruction of chaotic attractors, in generation of chaos and in the classification and model...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012